Boosting Discrimination Information Based Document Clustering Using Consensus and Classification
نویسندگان
چکیده
منابع مشابه
CDIM: Document Clustering by Discrimination Information Maximization
Ideally, document clustering methods should produce clusters that are semantically relevant and readily understandable as collections of documents belonging to particular contexts or topics. However, existing popular document clustering methods often ignore term-document corpus-based semantics while relying upon generic measures of similarity. In this paper, we present CDIM, an algorithmic fram...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملModel Based Document Classification and Clustering
In this paper we develop a complete methodology for document classification and clustering. We start by investigating how the choice of document features, such as weights, transformations, and dimensionality reduction, influences the performance of document classification. We then used these findings to construct a model based document clustering (MBDC) algorithm suitable for document collectio...
متن کاملDocument Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملDocument Clustering using Sequential Information Bottleneck Method
Document clustering is a subset of the larger field of data clustering, which borrows concepts from the fields of information retrieval (IR), natural language processing (NLP), and machine learning (ML). It is a more specific technique for unsupervised document organization, automatic topic extraction and fast information retrieval or filtering. There exist a wide variety of unsupervised cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2923462